The role of the network of matches on predicting success in table tennis

MIRKO LAI, Rosa Meo, Rossano Schifanella, Emilio Sulis

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

The influence of training, posture, nutrition or psychological attitudes on an athlete’s career is well described in literature. An additional factor of success that is widely recognised as crucial is the network of matches that an athlete plays during a season. The hypothesis is that the quality of a player’s opponents affects her long-term ranking and performance. Even though the relevance of these factors is widely recognised as important, a quantitative characterisation is missing. In this paper, we try to fill this gap combining network analysis and machine learning to estimate the contribution of the network of matches in predicting an athlete’s success. We consider all the official games played by the Italian table tennis players between 2011 and 2016. We observe that the matches network shows scale-free behaviour, typical of several real-world systems, and that different structural properties are positively 15 correlated with the athletes’ performance (Spearman ρ ¼ 0:88, p-value <0:01). Using these findings, we implement three different tasks, such as talent identification, performance and ranking prediction. Results shows consistently that machine learning approaches are able to predict players’ success and that the topological features play an effective role in increasing their predictive power.
Lingua originaleInglese
pagine (da-a)2691-2698
Numero di pagine8
RivistaJournal of Sports Sciences
Volume36
Numero di pubblicazione23
DOI
Stato di pubblicazionePubblicato - 2018

Keywords

  • Social network analysis
  • machine learning
  • performance analysis
  • ranking prediction
  • talent identification

Fingerprint

Entra nei temi di ricerca di 'The role of the network of matches on predicting success in table tennis'. Insieme formano una fingerprint unica.

Cita questo