Abstract
The lexicographic order is not representable by a real-valued function, contrary to many other orders or preorders. So, standard tools and results for well-posed minimum problems cannot be used. We prove that under suitable hypotheses it is however possible to guarantee the well-posedness of a lexicographic minimum over a compact or convex set. This result allows us to prove that some game theoretical solution concepts, based on lexicographic order are well-posed: in particular, this is true for the nucleolus.
| Lingua originale | Inglese |
|---|---|
| pagine (da-a) | 412-422 |
| Numero di pagine | 11 |
| Rivista | Journal of Mathematical Analysis and Applications |
| Volume | 314 |
| Numero di pubblicazione | 2 |
| DOI | |
| Stato di pubblicazione | Pubblicato - 15 feb 2006 |
| Pubblicato esternamente | Sì |