TY - JOUR
T1 - The metabolic response to the activation of the beta-adrenergic receptor by salbutamol is amplified by acylated ghrelin.
AU - DH, St Pierre
AU - Benso, A
AU - Gramaglia, E
AU - PRODAM, Flavia
AU - Lucatello, B
AU - Ramella, Gigliardi V
AU - Olivetti, I
AU - Tomelini, M
AU - Broglio, F.
N1 - Funding Information:
D.H. St-Pierre is supported by a postdoctoral award from the Canadian Institutes of Health Research (CIHR). This research was supported by grants from the European Union Framework Program VI Integrated Projects (LSH-CT2003-503041), Ministero dell’Università e della Ricerca Sci-entifica, University of Turin and SMEM Foundation.
PY - 2010
Y1 - 2010
N2 - BACKGROUND: It is well recognized that beta-adrenergic receptors mediate important endocrine and metabolic actions. In fact, beta-adrenergic receptor activation negatively influences GH secretion while exerting relevant metabolic actions such as the stimulation of insulin secretion, glycogenolysis, and lipolysis.
AIM: We have already shown that the activation of the GH secretagogue receptor (GHS-R)-1a by acylated ghrelin (AG) counteracts the inhibitory effect of salbutamol (SALB), a beta2-adrenergic agonist, on GH release. The aim of the present study in humans was to clarify whether the metabolic response to SALB is affected by the infusion of AG, also known to exert significant metabolic actions.
METHODS: Six healthy young male volunteers underwent the following testing sessions in random order at least 5 days apart: a) SALB (0.06 microg/kg/min iv from 0 to 60 min) alone; b) SALB in combination with AG (1.0 microg/kg/min iv from -60 to 60 min); c) isotonic saline. Insulin, glucose, and free fatty acids (FFA) levels were evaluated every 15 min.
RESULTS: As expected, with respect to saline, SALB administration tended to increase both insulin secretion [Delta area under the curve (DeltaAUC): 0.16+/-0.09 vs 0.003+/-0.077 x 10(3) microU/ml/min; p>0.05] and FFA levels (DeltaAUC: 8.0+/-7.3 vs -4.0+/-4.0 mEq/l/min; p>0.05), while glucose levels did not change. The metabolic response to SALB was significantly modified under the exposure of AG. In fact, under AG infusion, SALB elicited a more marked increase of FFA (DeltaAUC: 22.3+/-3.2 vs 8.0+/-7.3 mEq/l/min; p<0.05) as well as a slight elevation in insulin (DeltaAUC: 0.37+/-0.11 vs 0.16+/-0.09 x 10(3) microU/ml/min; p>0.05). Under AG, the baseline glucose levels were more elevated but, again, in combination with AG, SALB did not significantly modify glucose levels.
CONCLUSIONS: Beta-adrenergic receptors and AG are likely to interact at the metabolic level. In humans, the lypolitic response to a beta2-adrenergic agonist such as SALB is amplified by AG. Meanwhile, during the co-treatment, the marginal insulinotropic effect was not associated with an increase in glycemia.
AB - BACKGROUND: It is well recognized that beta-adrenergic receptors mediate important endocrine and metabolic actions. In fact, beta-adrenergic receptor activation negatively influences GH secretion while exerting relevant metabolic actions such as the stimulation of insulin secretion, glycogenolysis, and lipolysis.
AIM: We have already shown that the activation of the GH secretagogue receptor (GHS-R)-1a by acylated ghrelin (AG) counteracts the inhibitory effect of salbutamol (SALB), a beta2-adrenergic agonist, on GH release. The aim of the present study in humans was to clarify whether the metabolic response to SALB is affected by the infusion of AG, also known to exert significant metabolic actions.
METHODS: Six healthy young male volunteers underwent the following testing sessions in random order at least 5 days apart: a) SALB (0.06 microg/kg/min iv from 0 to 60 min) alone; b) SALB in combination with AG (1.0 microg/kg/min iv from -60 to 60 min); c) isotonic saline. Insulin, glucose, and free fatty acids (FFA) levels were evaluated every 15 min.
RESULTS: As expected, with respect to saline, SALB administration tended to increase both insulin secretion [Delta area under the curve (DeltaAUC): 0.16+/-0.09 vs 0.003+/-0.077 x 10(3) microU/ml/min; p>0.05] and FFA levels (DeltaAUC: 8.0+/-7.3 vs -4.0+/-4.0 mEq/l/min; p>0.05), while glucose levels did not change. The metabolic response to SALB was significantly modified under the exposure of AG. In fact, under AG infusion, SALB elicited a more marked increase of FFA (DeltaAUC: 22.3+/-3.2 vs 8.0+/-7.3 mEq/l/min; p<0.05) as well as a slight elevation in insulin (DeltaAUC: 0.37+/-0.11 vs 0.16+/-0.09 x 10(3) microU/ml/min; p>0.05). Under AG, the baseline glucose levels were more elevated but, again, in combination with AG, SALB did not significantly modify glucose levels.
CONCLUSIONS: Beta-adrenergic receptors and AG are likely to interact at the metabolic level. In humans, the lypolitic response to a beta2-adrenergic agonist such as SALB is amplified by AG. Meanwhile, during the co-treatment, the marginal insulinotropic effect was not associated with an increase in glycemia.
UR - https://iris.uniupo.it/handle/11579/35732
M3 - Article
SN - 0391-4097
VL - 33
SP - 363
EP - 367
JO - Journal of Endocrinological Investigation
JF - Journal of Endocrinological Investigation
IS - 6
ER -