Abstract
The gauging of the q-Poincar e ́ algebra of L. Castellani [Differential calculus on ISOq(N), quantum Poincaré algebra and q-gravity, Torino preprint DFTT-70/93, hep-th 9312179] yields a non-commutative generalization of the Einstein-Cartan lagrangian. We prove its invariance under local q-Lorentz rotations and, up to a total derivative, under q-diffeomorphisms. The variations of the fields are given by their q-Lie derivative, in analogy with the q = 1 case. The algebra of q-Lie derivatives is shown to close with field dependent structure functions. The equations of motion are found, generalizing the Einstein equations and the zero-torsion condition.
| Lingua originale | Inglese |
|---|---|
| pagine (da-a) | 22-28 |
| Numero di pagine | 7 |
| Rivista | Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics |
| Volume | 327 |
| Numero di pubblicazione | 1-2 |
| DOI | |
| Stato di pubblicazione | Pubblicato - 12 mag 1994 |
| Pubblicato esternamente | Sì |