The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla

Olivier Jaillon, Jean Marc Aury, Benjamin Noel, Alberto Policriti, Christian Clepet, Alberto Casagrande, Nathalie Choisne, Sébastien Aubourg, Nicola Vitulo, Claire Jubin, Alessandro Vezzi, Fabrice Legeai, Philippe Hugueney, Corinne Dasilva, David Horner, Erica Mica, Delphine Jublot, Julie Poulain, Clémence Bruyère, Alain BillaultBéatrice Segurens, Michel Gouyvenoux, Edgardo Ugarte, Federica Cattonaro, Véronique Anthouard, Virginie Vico, Cristian Del Fabbro, Michaël Alaux, Gabriele Di Gaspero, Vincent Dumas, Nicoletta Felice, Sophie Paillard, Irena Juman, Marco Moroldo, Simone Scalabrin, Aurélie Canaguier, Isabelle Le Clainche, Giorgio Malacrida, Eléonore Durand, Graziano Pesole, Valérie Laucou, Philippe Chatelet, Didier Merdinoglu, Massimo Delledonne, Mario Pezzotti, Alain Lecharny, Claude Scarpelli, François Artiguenave, M. Enrico Pè, Giorgio Valle, Michele Morgante, Michel Caboche, Anne Françoise Adam-Blondon, Jean Weissenbach, Francis Quétier, Patrick Wincker

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

The analysis of the first plant genomes provided unexpected evidence for genome duplication events in species that had previously been considered as true diploids on the basis of their genetics. These polyploidization events may have had important consequences in plant evolution, in particular for species radiation and adaptation and for the modulation of functional capacities. Here we report a high-quality draft of the genome sequence of grapevine (Vitis vinifera) obtained from a highly homozygous genotype. The draft sequence of the grapevine genome is the fourth one produced so far for flowering plants, the second for a woody species and the first for a fruit crop (cultivated for both fruit and beverage). Grapevine was selected because of its important place in the cultural heritage of humanity beginning during the Neolithic period. Several large expansions of gene families with roles in aromatic features are observed. The grapevine genome has not undergone recent genome duplication, thus enabling the discovery of ancestral traits and features of the genetic organization of flowering plants. This analysis reveals the contribution of three ancestral genomes to the grapevine haploid content. This ancestral arrangement is common to many dicotyledonous plants but is absent from the genome of rice, which is a monocotyledon. Furthermore, we explain the chronology of previously described whole-genome duplication events in the evolution of flowering plants.

Lingua originaleInglese
pagine (da-a)463-467
Numero di pagine5
RivistaNature
Volume449
Numero di pubblicazione7161
DOI
Stato di pubblicazionePubblicato - 27 set 2007
Pubblicato esternamente

Fingerprint

Entra nei temi di ricerca di 'The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla'. Insieme formano una fingerprint unica.

Cita questo