The flexible beta regression model

Sonia Migliorati, Agnese M. Di Brisco, Andrea Ongaro

Risultato della ricerca: Capitolo in libro/report/atti di convegnoContributo in volume (Capitolo o Saggio)peer review

Abstract

This chapter aims to study the performances of a new regression model for continuous variables with bounded support that extends the well-known beta regression model. Under the new regression model, the response variable is assumed to have a flexible beta (FB) distribution, a special mixture of two beta distributions that can be interpreted as the univariate version of the flexible Dirichlet distribution. The chapter introduces the FB distribution, proposes a reparameterization that is designed for this regression context, and enables a very clear interpretation of the new parameters. It defines the FB regression (FBR) model and interprets it as mixture of regression models. The chapter provides details concerning Bayesian inference and the Gibbs sampling algorithm specifically designed for mixture models. It performs an illustrative application on a real data set in order to evaluate the performance of the FBR model and compare it with the BR and beta regression ones.

Lingua originaleInglese
Titolo della pubblicazione ospiteData Analysis and Applications 1
Sottotitolo della pubblicazione ospiteClustering and Regression, Modeling-estimating, Forecasting and Data Mining
Editorewiley
Pagine39-52
Numero di pagine14
ISBN (elettronico)9781119597568
ISBN (stampa)9781786303820
DOI
Stato di pubblicazionePubblicato - 6 mar 2019
Pubblicato esternamente

Fingerprint

Entra nei temi di ricerca di 'The flexible beta regression model'. Insieme formano una fingerprint unica.

Cita questo