The burrows-wheeler transform: Theory and practice

Giovanni Manzini

Risultato della ricerca: Capitolo in libro/report/atti di convegnoContributo a conferenzapeer review

Abstract

In this paper we describe the Burrows-Wheeler Transform (BWT) a completely new approach to data compression which is the basis of some of the best compressors available today. Although it is easy to intuitively understand why the BWT helps compression, the analysis of BWT-based algorithms requires a careful study of every single algorithmic component. We describe two algorithms which use the BWT and we show that their compression ratio can be bounded in terms of the k-th order empirical entropy of the input string for any k ≥ 0. Intuitively, this means that these algorithms are able to make use of all the regularity which is in the input string. We also discuss some of the algorithmic issues which arise in the computation of the BWT, and we describe two variants of the BWT which promise interesting developments.

Lingua originaleInglese
Titolo della pubblicazione ospiteMathematical Foundations of Computer Science 1999 - 24th International Symposium, MFCS 1999, Proceedings
EditorMirosław kutyłowski, Leszek Pacholski, Tomasz Wierzbicki
EditoreSpringer Verlag
Pagine34-47
Numero di pagine14
ISBN (stampa)3540664084, 9783540664086
DOI
Stato di pubblicazionePubblicato - 1999
Pubblicato esternamente
Evento24th International Symposium on Mathematical Foundations of Computer Science, MFCS 1999 - Szklarska Poreba, Poland
Durata: 6 set 199910 set 1999

Serie di pubblicazioni

NomeLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume1672
ISSN (stampa)0302-9743
ISSN (elettronico)1611-3349

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???24th International Symposium on Mathematical Foundations of Computer Science, MFCS 1999
Paese/TerritorioPoland
CittàSzklarska Poreba
Periodo6/09/9910/09/99

Fingerprint

Entra nei temi di ricerca di 'The burrows-wheeler transform: Theory and practice'. Insieme formano una fingerprint unica.

Cita questo