TY - JOUR
T1 - Tailored functionalization of poly(L-lactic acid) substrates at the nanoscale to enhance cell response
AU - Carmagnola, Irene
AU - Chiono, Valeria
AU - Abrigo, Martina
AU - Ranzato, Elia
AU - Martinotti, Simona
AU - Ciardelli, Gianluca
N1 - Publisher Copyright:
© 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group.
PY - 2019/5/3
Y1 - 2019/5/3
N2 - Poly(L-lactic) acid (PLLA) has been widely employed in tissue engineering due to its mechanical properties, biodegradability and biocompatibility. The layer-by-layer (LbL) technique was here proposed as a simple method to impart bioactivity to the surface of PLLA substrates. Aminolysis treatment was applied to introduce amino groups on the surface of PLLA solvent cast films. Then, PLLA films were coated with heparin (HE)/chitosan (CH) multilayer by the LbL technique. Each functionalization step was characterized through physico-chemical and morphological analyses. Aminolysis treatment increased film surface wettability (64.8° ± 2.4° against 74.6° ± 1.3° for untreated PLLA) due to the formation of surface amino groups, which were quantified by acid orange colorimetric assay (0.05 nmol/mm 2 ). After the deposition of 9 layers, the static contact angle varied between values close to 40° C (HE-based layer) and 60 °C (CH-based layer), showing the typical alternate trend of LbL coating. The successful HE/CH deposition was confirmed by ATR-FTIR and X-ray photoelectron spectroscopy (XPS) analyses. Particularly, XPS spectra of coated samples showed the presence of nitrogen (indicative of HE and CH deposition), and sulfur (indicative of HE deposition). The amount of deposited HE was quantified by Taylor’s Blue colorimetric method: after the deposition of 19 and 20 layers the HE concentration was around 33 µg/cm 2 . Finally, in vitro studies performed using HaCaT immortalized human skin keratinocytes, C2C12 immortalized mouse myoblasts and human fibroblasts demonstrated that HE/CH multilayer-coated PLLA is a promising substrate for soft tissue engineering, as cell response may be modulated by changing the surface chemical properties.
AB - Poly(L-lactic) acid (PLLA) has been widely employed in tissue engineering due to its mechanical properties, biodegradability and biocompatibility. The layer-by-layer (LbL) technique was here proposed as a simple method to impart bioactivity to the surface of PLLA substrates. Aminolysis treatment was applied to introduce amino groups on the surface of PLLA solvent cast films. Then, PLLA films were coated with heparin (HE)/chitosan (CH) multilayer by the LbL technique. Each functionalization step was characterized through physico-chemical and morphological analyses. Aminolysis treatment increased film surface wettability (64.8° ± 2.4° against 74.6° ± 1.3° for untreated PLLA) due to the formation of surface amino groups, which were quantified by acid orange colorimetric assay (0.05 nmol/mm 2 ). After the deposition of 9 layers, the static contact angle varied between values close to 40° C (HE-based layer) and 60 °C (CH-based layer), showing the typical alternate trend of LbL coating. The successful HE/CH deposition was confirmed by ATR-FTIR and X-ray photoelectron spectroscopy (XPS) analyses. Particularly, XPS spectra of coated samples showed the presence of nitrogen (indicative of HE and CH deposition), and sulfur (indicative of HE deposition). The amount of deposited HE was quantified by Taylor’s Blue colorimetric method: after the deposition of 19 and 20 layers the HE concentration was around 33 µg/cm 2 . Finally, in vitro studies performed using HaCaT immortalized human skin keratinocytes, C2C12 immortalized mouse myoblasts and human fibroblasts demonstrated that HE/CH multilayer-coated PLLA is a promising substrate for soft tissue engineering, as cell response may be modulated by changing the surface chemical properties.
KW - Surface modification
KW - aminolysis
KW - layer-by-layer technique
KW - poly(L-lactic) acid
KW - polysaccharides
UR - http://www.scopus.com/inward/record.url?scp=85063441710&partnerID=8YFLogxK
U2 - 10.1080/09205063.2019.1580954
DO - 10.1080/09205063.2019.1580954
M3 - Article
SN - 0920-5063
VL - 30
SP - 526
EP - 546
JO - Journal of Biomaterials Science, Polymer Edition
JF - Journal of Biomaterials Science, Polymer Edition
IS - 7
ER -