TY - JOUR
T1 - Synthesis and Biological Studies of Pyrazolyl-Diamine PtII Complexes Containing Polyaromatic DNA-Binding Groups
AU - Gama, Sofia
AU - Mendes, Filipa
AU - Esteves, Teresa
AU - Marques, Fernanda
AU - Matos, António
AU - Rino, José
AU - Coimbra, Joana
AU - Ravera, Mauro
AU - Gabano, Elisabetta
AU - Santos, Isabel
AU - Paulo, António
PY - 2012/11/5
Y1 - 2012/11/5
N2 - New [PtCl(pzNN)]n+ complexes anchored by pyrazolyl-diamine (pzNN) ligands incorporating anthracenyl or acridine orange DNA-binding groups have been synthesized so as to obtain compounds that would display synergistic effects between platination and intercalation of DNA. Study of their interaction with supercoiled DNA indicated that the anthracenyl-containing complex L2Pt displays a covalent type of binding, whereas the acridine orange counterpart L3Pt shows a combination of intercalative and covalent binding modes with a strong contribution from the former. L2Pt showed a very strong cytotoxic effect on ovarian carcinoma cell lines A2780 and A2780cisR, which are, respectively, sensitive to and resistant to cisplatin. In these cell lines, L2Pt is nine to 27 times more cytotoxic than cisplatin. In the sensitive cell line, L3Pt showed a cytotoxic activity similar to that of cisplatin, but like L2Pt was able significantly to overcome cisplatin cross-resistance. Cell-uptake studies showed that L2Pt accumulates preferentially in the cytoplasm, whereas L3Pt reaches the cell nucleus more easily, as clearly visualized by time-lapse confocal imaging of live A2870 cells. Altogether, these findings seem to indicate that interaction with biological targets other than DNA might be involved in the mechanism of action of L2Pt because this compound, despite having a weaker ability to target the cell nucleus than L3Pt, as well as an inferior DNA affinity, is nevertheless more cytotoxic. Furthermore, ultrastructural studies of A2870 cells exposed to L2Pt and L3Pt revealed that these complexes induce different alterations in cell morphology, thus indicating the involvement of different modes of action in cell death.
AB - New [PtCl(pzNN)]n+ complexes anchored by pyrazolyl-diamine (pzNN) ligands incorporating anthracenyl or acridine orange DNA-binding groups have been synthesized so as to obtain compounds that would display synergistic effects between platination and intercalation of DNA. Study of their interaction with supercoiled DNA indicated that the anthracenyl-containing complex L2Pt displays a covalent type of binding, whereas the acridine orange counterpart L3Pt shows a combination of intercalative and covalent binding modes with a strong contribution from the former. L2Pt showed a very strong cytotoxic effect on ovarian carcinoma cell lines A2780 and A2780cisR, which are, respectively, sensitive to and resistant to cisplatin. In these cell lines, L2Pt is nine to 27 times more cytotoxic than cisplatin. In the sensitive cell line, L3Pt showed a cytotoxic activity similar to that of cisplatin, but like L2Pt was able significantly to overcome cisplatin cross-resistance. Cell-uptake studies showed that L2Pt accumulates preferentially in the cytoplasm, whereas L3Pt reaches the cell nucleus more easily, as clearly visualized by time-lapse confocal imaging of live A2870 cells. Altogether, these findings seem to indicate that interaction with biological targets other than DNA might be involved in the mechanism of action of L2Pt because this compound, despite having a weaker ability to target the cell nucleus than L3Pt, as well as an inferior DNA affinity, is nevertheless more cytotoxic. Furthermore, ultrastructural studies of A2870 cells exposed to L2Pt and L3Pt revealed that these complexes induce different alterations in cell morphology, thus indicating the involvement of different modes of action in cell death.
KW - Antitumor agents
KW - Cytotoxicity
KW - DNA binding
KW - Platinum complexes
KW - Pyrazolyl ligands
UR - http://www.scopus.com/inward/record.url?scp=84868093608&partnerID=8YFLogxK
U2 - 10.1002/cbic.201200472
DO - 10.1002/cbic.201200472
M3 - Article
SN - 1439-4227
VL - 13
SP - 2352
EP - 2362
JO - ChemBioChem
JF - ChemBioChem
IS - 16
ER -