Abstract
We derive an algorithm for the construction of all the gauge generators of a constrained hamiltonian theory. Dirac's conjecture that all secondary first-class constraints generate symmetries is revisited and replaced by a theorem. The algorithm is applied to Yang-Mills theories and metric gravity, and we find generators which operate on the complete set of canonical variables, thus producing the correct transformation laws also for the unphysical coordinates. Finally we discuss the general structure of the Hamiltonian for constrained theories. We show how in most cases one can read off the first-class constraints directly from the Hamiltonian.
| Lingua originale | Inglese |
|---|---|
| pagine (da-a) | 357-371 |
| Numero di pagine | 15 |
| Rivista | Annals of Physics |
| Volume | 143 |
| Numero di pubblicazione | 2 |
| DOI | |
| Stato di pubblicazione | Pubblicato - 15 ott 1982 |
| Pubblicato esternamente | Sì |