Abstract
Noncommutative spacetimes and their symmetries can be constructed using the notion of (abelian) Drinfeld twist. We review the general formalism and present the examples of the Poincaré *-Lie algebra on Moyal-Weyl deformed Minkowski space and of the *-Lie algebra of vectorfields on an arbitrary twist deformed manifold. The second example defines the notion of Lie derivative. This paves the way to the definition of the covariant derivative. Noncommutative Einstein's gravity equations are formulated.
Lingua originale | Inglese |
---|---|
pagine (da-a) | 11-22 |
Numero di pagine | 12 |
Rivista | Progress of Theoretical Physics Supplement |
Numero di pubblicazione | 171 |
DOI | |
Stato di pubblicazione | Pubblicato - 2007 |