Supercritical biharmonic equations with power-type nonlinearity

Alberto Ferrero, Hans Christoph Grunau, Paschalis Karageorgis

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

We study two different versions of a supercritical biharmonic equation with a power-type nonlinearity. First, we focus on the equation Δ2 u = |u| p-1 u over the whole space ℝn, where n > 4 and p > (n + 4)/(n - 4). Assuming that p < p c, where p c is a further critical exponent, we show that all regular radial solutions oscillate around an explicit singular radial solution. As it was already known, on the other hand, no such oscillations occur in the remaining case p ≥ pc. We also study the Dirichlet problem for the equation Δ2 u = λ (1 + u)p over the unit ball in ℝn, where λ > 0 is an eigenvalue parameter, while n > 4 and p > (n + 4)/(n - 4) as before. When it comes to the extremal solution associated to this eigenvalue problem, we show that it is regular as long as p < p c. Finally, we show that a singular solution exists for some appropriate λ > 0.

Lingua originaleInglese
pagine (da-a)171-185
Numero di pagine15
RivistaAnnali di Matematica Pura ed Applicata
Volume188
Numero di pubblicazione1
DOI
Stato di pubblicazionePubblicato - gen 2009
Pubblicato esternamente

Fingerprint

Entra nei temi di ricerca di 'Supercritical biharmonic equations with power-type nonlinearity'. Insieme formano una fingerprint unica.

Cita questo