Structured hidden Markov model: A general framework for modeling complex sequences

Ugo Galassi, Attilio Giordana, Lorenza Saitta

Risultato della ricerca: Capitolo in libro/report/atti di convegnoContributo a conferenzapeer review

Abstract

Structured Hidden Markov Model (S-HMM) is a variant of Hierarchical Hidden Markov Model that shows interesting capabilities of extracting knowledge from symbolic sequences. In fact, the S-HMM structure provides an abstraction mechanism allowing a high level symbolic description of the knowledge embedded in S-HMM to be easily obtained. The paper provides a theoretical analysis of the complexity of the matching and training algorithms on S-HMMs. More specifically, it is shown that Baum-Welch algorithm benefits from the so called locality property, which allows specific components to be modified and retrained, without doing so for the full model. The problem of modeling duration and of extracting (embedding) readable knowledge from (into) a S-HMM is also discussed.

Lingua originaleInglese
Titolo della pubblicazione ospiteAI IA 2007
Sottotitolo della pubblicazione ospiteArtificial Intelligence and Human-Oriented Computing - 10th Congress of the Italian Association for Artificial Intelligence, Proceedings
EditoreSpringer Verlag
Pagine290-301
Numero di pagine12
ISBN (stampa)9783540747819
DOI
Stato di pubblicazionePubblicato - 2007
Pubblicato esternamente
Evento10th Congress of the Italian Association for Artificial Intelligence, AI IA 2007 - Rome, Italy
Durata: 10 set 200713 set 2007

Serie di pubblicazioni

NomeLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume4733 LNAI
ISSN (stampa)0302-9743
ISSN (elettronico)1611-3349

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???10th Congress of the Italian Association for Artificial Intelligence, AI IA 2007
Paese/TerritorioItaly
CittàRome
Periodo10/09/0713/09/07

Fingerprint

Entra nei temi di ricerca di 'Structured hidden Markov model: A general framework for modeling complex sequences'. Insieme formano una fingerprint unica.

Cita questo