Shape sensitivity analysis of the eigenvalues of the reissner-mindlin system

Davide Buoso, Pier Domenico Lamberti

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

We consider the eigenvalue problem for the Reissner-Mindlin system arising in the study of the free vibration modes of an elastic clamped plate. We provide quantitative estimates for the variation of the eigenvalues upon variation of the shape of the plate. We also prove analyticity results and establish Hadamard-type formulas. Finally, we address the problem of minimization of the eigenvalues in the case of isovolumetric domain perturbations. In the spirit of the Rayleigh conjecture for the biharmonic operator, we prove that balls are critical points with volume constraint for all simple eigenvalues and the elementary symmetric functions of multiple eigenvalues.

Lingua originaleInglese
pagine (da-a)407-426
Numero di pagine20
RivistaSIAM Journal on Mathematical Analysis
Volume47
Numero di pubblicazione1
DOI
Stato di pubblicazionePubblicato - 2015
Pubblicato esternamente

Fingerprint

Entra nei temi di ricerca di 'Shape sensitivity analysis of the eigenvalues of the reissner-mindlin system'. Insieme formano una fingerprint unica.

Cita questo