Shape Perturbation of Grushin Eigenvalues

Pier Domenico Lamberti, Paolo Luzzini, Paolo Musolino

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

We consider the spectral problem for the Grushin Laplacian subject to homogeneous Dirichlet boundary conditions on a bounded open subset of RN. We prove that the symmetric functions of the eigenvalues depend real analytically upon domain perturbations and we prove an Hadamard-type formula for their shape differential. In the case of perturbations depending on a single scalar parameter, we prove a Rellich–Nagy-type theorem which describes the bifurcation phenomenon of multiple eigenvalues. As corollaries, we characterize the critical shapes under isovolumetric and isoperimetric perturbations in terms of overdetermined problems and we deduce a new proof of the Rellich–Pohozaev identity for the Grushin eigenvalues.

Lingua originaleInglese
pagine (da-a)10679-10717
Numero di pagine39
RivistaJournal of Geometric Analysis
Volume31
Numero di pubblicazione11
DOI
Stato di pubblicazionePubblicato - nov 2021
Pubblicato esternamente

Fingerprint

Entra nei temi di ricerca di 'Shape Perturbation of Grushin Eigenvalues'. Insieme formano una fingerprint unica.

Cita questo