Abstract
We consider the spectral problem for the Grushin Laplacian subject to homogeneous Dirichlet boundary conditions on a bounded open subset of RN. We prove that the symmetric functions of the eigenvalues depend real analytically upon domain perturbations and we prove an Hadamard-type formula for their shape differential. In the case of perturbations depending on a single scalar parameter, we prove a Rellich–Nagy-type theorem which describes the bifurcation phenomenon of multiple eigenvalues. As corollaries, we characterize the critical shapes under isovolumetric and isoperimetric perturbations in terms of overdetermined problems and we deduce a new proof of the Rellich–Pohozaev identity for the Grushin eigenvalues.
Lingua originale | Inglese |
---|---|
pagine (da-a) | 10679-10717 |
Numero di pagine | 39 |
Rivista | Journal of Geometric Analysis |
Volume | 31 |
Numero di pubblicazione | 11 |
DOI | |
Stato di pubblicazione | Pubblicato - nov 2021 |
Pubblicato esternamente | Sì |