Abstract
We compute three-term semiclassical asymptotic expansions of counting functions and Riesz-means of the eigenvalues of the Laplacian on spheres and hemispheres, for both Dirichlet and Neumann boundary conditions. Specifically for Riesz-means we prove upper and lower bounds involving asymptotically sharp shift terms, and we extend them to domains of Sd . We also prove a Berezin–Li–Yau inequality for domains contained in the hemisphere S+2 .
| Lingua originale | Inglese |
|---|---|
| Numero di articolo | 280 |
| Rivista | Journal of Geometric Analysis |
| Volume | 33 |
| Numero di pubblicazione | 9 |
| DOI | |
| Stato di pubblicazione | Pubblicato - set 2023 |