TY - JOUR
T1 - Role of 2-[18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) in the early assessment of response to chemotherapy in metastatic breast cancer patients.
AU - Gennari, A.
AU - Donati, S.
AU - Salvadori, B.
AU - Giorgetti, A.
AU - Salvadori, P. A.
AU - Sorace, O.
AU - Puccini, G.
AU - Pisani, P.
AU - Poli, M.
AU - Dani, D.
AU - Landucci, E.
AU - Mariani, G.
AU - Conte, P. F.
N1 - Funding Information:
Dr. Barbara Salvadori was supported by a grant from the Federazione Italiana Ricerca Cancro (FIRC).
PY - 2000/7
Y1 - 2000/7
N2 - We investigated the role of 2-[18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) in the early evaluation of response to chemotherapy in metastatic breast cancer patients. Breast cancer patients who received an epirubicin/paclitaxel--containing regimen as first-line treatment for metastatic disease were included in this study. A PET study was performed within 1 week before the start of treatment, at day 8 after the first course, and at the end of the planned program of chemotherapy. Tumor response was determined clinically and radiographically every 2 courses of treatment. Thirteen patients with metastatic breast cancer who were referred for treatment protocols with gemcitabine/epirubicin/paclitaxel or epirubicin/paclitaxel chemotherapy regimens were included in this study. All metastatic sites were easily visualized on the baseline FDG-PET images, obtained 50 to 60 minutes after tracer injection. Nine patients who completed the planned courses of chemotherapy and the FDG-PET studies were available for analysis. In the six patients who achieved a response to treatment, median glucose standard uptake value (SUV) (semiquantitative analysis) was 7.65 (range, 3.4-12.3) at baseline, 5.7 (range, 2.8-7.6) at day 8 after the first course, and 1.2 (range, 0.99-1.3) at the end of the 6 planned courses of chemotherapy. Three patients who obtained a stable disease as best response had no significant decrease in tumor glucose SUV compared to baseline levels. Qualitative visual analysis in the six responding patients showed a decrease in delineation of tumor mass from background activity soon after the first course, while the nonresponding patients had no significant modification from basal levels. Semiquantitative FDG-PET scanning of metastatic breast cancer sites showed a rapid and significant decrease in tumor glucose metabolism soon after the first course of treatment in patients who achieved a response to first-line chemotherapy. On the contrary, no significant decrease was observed in nonresponding patients.
AB - We investigated the role of 2-[18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) in the early evaluation of response to chemotherapy in metastatic breast cancer patients. Breast cancer patients who received an epirubicin/paclitaxel--containing regimen as first-line treatment for metastatic disease were included in this study. A PET study was performed within 1 week before the start of treatment, at day 8 after the first course, and at the end of the planned program of chemotherapy. Tumor response was determined clinically and radiographically every 2 courses of treatment. Thirteen patients with metastatic breast cancer who were referred for treatment protocols with gemcitabine/epirubicin/paclitaxel or epirubicin/paclitaxel chemotherapy regimens were included in this study. All metastatic sites were easily visualized on the baseline FDG-PET images, obtained 50 to 60 minutes after tracer injection. Nine patients who completed the planned courses of chemotherapy and the FDG-PET studies were available for analysis. In the six patients who achieved a response to treatment, median glucose standard uptake value (SUV) (semiquantitative analysis) was 7.65 (range, 3.4-12.3) at baseline, 5.7 (range, 2.8-7.6) at day 8 after the first course, and 1.2 (range, 0.99-1.3) at the end of the 6 planned courses of chemotherapy. Three patients who obtained a stable disease as best response had no significant decrease in tumor glucose SUV compared to baseline levels. Qualitative visual analysis in the six responding patients showed a decrease in delineation of tumor mass from background activity soon after the first course, while the nonresponding patients had no significant modification from basal levels. Semiquantitative FDG-PET scanning of metastatic breast cancer sites showed a rapid and significant decrease in tumor glucose metabolism soon after the first course of treatment in patients who achieved a response to first-line chemotherapy. On the contrary, no significant decrease was observed in nonresponding patients.
UR - http://www.scopus.com/inward/record.url?scp=0034236325&partnerID=8YFLogxK
U2 - 10.3816/cbc.2000.n.014
DO - 10.3816/cbc.2000.n.014
M3 - Article
SN - 1526-8209
VL - 1
SP - 156-161; discussion 162-163
JO - Clinical Breast Cancer
JF - Clinical Breast Cancer
IS - 2
ER -