TY - JOUR
T1 - Relaxometric properties and biocompatibility of a novel nanostructured fluorinated gadolinium metal–organic framework
AU - Trovarelli, Letizia
AU - Mirarchi, Alessandra
AU - Arcuri, Cataldo
AU - Bruscoli, Stefano
AU - Bereshchenko, Oxana
AU - Febo, Marta
AU - CARNIATO, FABIO
AU - Costantino, Ferdinando
PY - 2024
Y1 - 2024
N2 - A novel Gd-MOF based on tetrafluoro-terephthalic acid has been synthesized and its structure has been solved using X-ray single crystal diffraction data. The compound, with the formula [Gd2(F4BDC)3·H2O]·DMF, is isostructural with other Ln-MOFs based on the same ligand and has been recently reported. Its crystals were also reduced to nanometer size by employing acetic acid or cetyltrimethylammonium bromide (CTAB) as a modulator. The relaxometric properties of the nanoparticles were evaluated in solution by measuring 1H T1 and T2 as a function of the applied magnetic field and temperature. The biocompatibility of Gd-MOFs was evaluated on murine microglial BV-2 and human glioblastoma U251 cell lines. In both cell lines, Gd-MOFs do not modify the cell cycle profile or the activation levels of ERK1/2 and Akt, which are protein-serine/threonine kinases that participate in many signal transduction pathways. These pathways are fundamental in the regulation of a large variety of processes such as cell migration, cell cycle progression, differentiation, cell survival, metabolism, transcription, tumour progression and others. These data indicate that Gd-MOF nanoparticles exhibit high biocompatibility, making them potentially valuable for diagnostic and biomedical applications.
AB - A novel Gd-MOF based on tetrafluoro-terephthalic acid has been synthesized and its structure has been solved using X-ray single crystal diffraction data. The compound, with the formula [Gd2(F4BDC)3·H2O]·DMF, is isostructural with other Ln-MOFs based on the same ligand and has been recently reported. Its crystals were also reduced to nanometer size by employing acetic acid or cetyltrimethylammonium bromide (CTAB) as a modulator. The relaxometric properties of the nanoparticles were evaluated in solution by measuring 1H T1 and T2 as a function of the applied magnetic field and temperature. The biocompatibility of Gd-MOFs was evaluated on murine microglial BV-2 and human glioblastoma U251 cell lines. In both cell lines, Gd-MOFs do not modify the cell cycle profile or the activation levels of ERK1/2 and Akt, which are protein-serine/threonine kinases that participate in many signal transduction pathways. These pathways are fundamental in the regulation of a large variety of processes such as cell migration, cell cycle progression, differentiation, cell survival, metabolism, transcription, tumour progression and others. These data indicate that Gd-MOF nanoparticles exhibit high biocompatibility, making them potentially valuable for diagnostic and biomedical applications.
UR - https://iris.uniupo.it/handle/11579/201282
U2 - 10.1039/d4dt02134g
DO - 10.1039/d4dt02134g
M3 - Article
SN - 1477-9226
VL - 53
SP - 15937
EP - 15945
JO - Dalton Transactions
JF - Dalton Transactions
IS - 38
ER -