Relapsing-remitting multiple scleroris and the role of vitamin D: An agent based model

Francesco Pappalardo, Marzio Pennisi, Abdul Mateen Rajput, Ferdinando Chiacchio, Santo Motta

Risultato della ricerca: Capitolo in libro/report/atti di convegnoContributo a conferenzapeer review

Abstract

Multiple sclerosis is an appalling disease which destroys the insulatic covers of the connections between neurons, causing disability and death. Its etiology is not yet fully understood and causes remain still unknown; therefore mathematical and computational models can help to test and verify biological hypoteses, and to understand the immune mechanisms involved. We present an extension of an agent based model that demonstrated able to describe the most common form of multiple sclerosis (relapsing-remitting) coupled with the presence of an important external factor that can improve the disease course: Vitamin D. We investigate the role of Vitamin D by a qualitative point of view, taking into account its well known immunomodulatory mechanisms.

Lingua originaleInglese
Titolo della pubblicazione ospiteACM BCB 2014 - 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics
EditoreAssociation for Computing Machinery
Pagine744-748
Numero di pagine5
ISBN (elettronico)9781450328944
DOI
Stato di pubblicazionePubblicato - 20 set 2014
Pubblicato esternamente
Evento5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics, ACM BCB 2014 - Newport Beach, United States
Durata: 20 set 201423 set 2014

Serie di pubblicazioni

NomeACM BCB 2014 - 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics, ACM BCB 2014
Paese/TerritorioUnited States
CittàNewport Beach
Periodo20/09/1423/09/14

Fingerprint

Entra nei temi di ricerca di 'Relapsing-remitting multiple scleroris and the role of vitamin D: An agent based model'. Insieme formano una fingerprint unica.

Cita questo