TY - JOUR
T1 - Redox regulation of chemokine receptor expression
AU - Saccani, Alessandra
AU - Saccani, Simona
AU - Orlando, Simone
AU - Sironi, Marina
AU - Bernasconi, Sergio
AU - Ghezzi, Pietro
AU - Mantovani, Alberto
AU - Sica, Antonio
PY - 2000/3/14
Y1 - 2000/3/14
N2 - Cytokines and reactive oxygen intermediates (ROI) are frequent companions at sites of acute inflammation. We have shown previously that in human monocytes, bacterial lipopolysaccharide, IL-1, and tumor necrosis factor-α induce a rapid down-regulation of the monocyte chemotactic protein- 1 receptor CCR2 (CC chemokine receptor-2). These stimuli also induce production of ROI. In this paper, we investigate the influence of antioxidants and/or ROI on chemokine-receptor expression. In human monocytes, the antioxidant pyrrolidine dithiocarbamate (PDTC) rapidly inhibited CCR2 (95-100% of inhibition) and CCR5 (77-100% of inhibition) mRNA expression by strongly decreasing transcript stability. CCR2 half-life was decreased from 1.5 h to 45 min; CCR5 half-life was decreased from 2 h to 70 min. This inhibitory activity also included CXCR4 (CXC chemokine receptor-4) but not CXCR2 receptor and, although to a lesser extent, was shared by the antioxidants N-acetyl-L-cysteine and 2-mercaptoethanol. In contrast, the ROI- generating system xanthine/xanthine oxidase increased CCR5 and CXCR4 mRNA expression and counteracted the inhibitory effect of PDTC. Accordingly, H2O2 and the glutathione-depleting drug buthionine sulfoximine increased to different extents CCR2, CCR5, and CXCR4 mRNA expression. The PDTC-mediated inhibition of CCR5 and CXCR4 mRNA expression was associated with decreased chemotactic responsiveness (>90% inhibition) and with a marked inhibition of surface-receptor expression. In contrast, xanthine/xanthine oxidase opposed the bacterial lipopolysaccharide- and tumor necrosis factor-α-mediated inhibition of CCR5 and CXCR4 mRNA expression and increased both the CCR5 surface expression and the cell migration (3-fold) in response to macrophage inflammatory protein-1β. These results suggest that the redox status of cells is a crucial determinant in the regulation of the chemokine system.
AB - Cytokines and reactive oxygen intermediates (ROI) are frequent companions at sites of acute inflammation. We have shown previously that in human monocytes, bacterial lipopolysaccharide, IL-1, and tumor necrosis factor-α induce a rapid down-regulation of the monocyte chemotactic protein- 1 receptor CCR2 (CC chemokine receptor-2). These stimuli also induce production of ROI. In this paper, we investigate the influence of antioxidants and/or ROI on chemokine-receptor expression. In human monocytes, the antioxidant pyrrolidine dithiocarbamate (PDTC) rapidly inhibited CCR2 (95-100% of inhibition) and CCR5 (77-100% of inhibition) mRNA expression by strongly decreasing transcript stability. CCR2 half-life was decreased from 1.5 h to 45 min; CCR5 half-life was decreased from 2 h to 70 min. This inhibitory activity also included CXCR4 (CXC chemokine receptor-4) but not CXCR2 receptor and, although to a lesser extent, was shared by the antioxidants N-acetyl-L-cysteine and 2-mercaptoethanol. In contrast, the ROI- generating system xanthine/xanthine oxidase increased CCR5 and CXCR4 mRNA expression and counteracted the inhibitory effect of PDTC. Accordingly, H2O2 and the glutathione-depleting drug buthionine sulfoximine increased to different extents CCR2, CCR5, and CXCR4 mRNA expression. The PDTC-mediated inhibition of CCR5 and CXCR4 mRNA expression was associated with decreased chemotactic responsiveness (>90% inhibition) and with a marked inhibition of surface-receptor expression. In contrast, xanthine/xanthine oxidase opposed the bacterial lipopolysaccharide- and tumor necrosis factor-α-mediated inhibition of CCR5 and CXCR4 mRNA expression and increased both the CCR5 surface expression and the cell migration (3-fold) in response to macrophage inflammatory protein-1β. These results suggest that the redox status of cells is a crucial determinant in the regulation of the chemokine system.
UR - http://www.scopus.com/inward/record.url?scp=0034646464&partnerID=8YFLogxK
U2 - 10.1073/pnas.97.6.2761
DO - 10.1073/pnas.97.6.2761
M3 - Article
SN - 0027-8424
VL - 97
SP - 2761
EP - 2766
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 6
ER -