Recent themes in case-based reasoning and knowledge discovery

Isabelle Bichindaritz, Cindy Marling, Stefania Montani

Risultato della ricerca: Capitolo in libro/report/atti di convegnoContributo a conferenzapeer review

Abstract

Case-based reasoning (CBR) systems have tight connections with machine learning and knowledge discovery and often incorporate diverse knowledge discovery functionalities and algorithms. This article presents themes identified in work presented at recent workshops on synergies between CBR and knowledge discovery. Among the main themes appear Big Data, with cases involving signals, images, texts, and other complex types of data; similarity metric discovery, in the form of weight spaces, feature weights, and feature selection; adaptation knowledge; explainability and transparency; and user centeredness and interactivity. Researchers highlight the advantages of case-based reasoning in terms of its lazy learning, explainability, user centeredness, and interactivity when performing knowledge discovery, as well as how diverse knowledge discovery methods can improve CBR.

Lingua originaleInglese
Titolo della pubblicazione ospiteFLAIRS 2017 - Proceedings of the 30th International Florida Artificial Intelligence Research Society Conference
EditorVasile Rus, Zdravko Markov
EditoreAAAI press
Pagine499-502
Numero di pagine4
ISBN (elettronico)9781577357872
Stato di pubblicazionePubblicato - 2017
Evento30th International Florida Artificial Intelligence Research Society Conference, FLAIRS 2017 - Marco Island, United States
Durata: 22 mag 201724 mag 2017

Serie di pubblicazioni

NomeFLAIRS 2017 - Proceedings of the 30th International Florida Artificial Intelligence Research Society Conference

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???30th International Florida Artificial Intelligence Research Society Conference, FLAIRS 2017
Paese/TerritorioUnited States
CittàMarco Island
Periodo22/05/1724/05/17

Fingerprint

Entra nei temi di ricerca di 'Recent themes in case-based reasoning and knowledge discovery'. Insieme formano una fingerprint unica.

Cita questo