TY - JOUR
T1 - Recent Insights on the Mechanisms of Liver Preconditioning
AU - Carini, Rita
AU - Albano, Emanuele
N1 - Funding Information:
Supported by grants from University “Amedeo Avogadro” of East Piedmont, the regional government of Piedmont, and the Italian Ministry for Instruction, University and Scientific Research (research program: molecular mechanisms of protection of steatotic liver against ischemia reperfusion).
PY - 2003/11
Y1 - 2003/11
N2 - Ischemia/reperfusion is the main cause of hepatic damage consequent to temporary clamping of the hepatoduodenal ligament during liver surgery as well as graft failure after liver transplantation. In recent years, a number of animal studies have shown that pre-exposure of the liver to transient ischemia, hyperthermia, or mild oxidative stress increases the tolerance to reperfusion injury, a phenomenon known as hepatic preconditioning. The development of hepatic preconditioning can be differentiated into 2 phases. An immediate phase (early preconditioning) occurs within minutes and involves the direct modulation of energy supplies, pH regulation, Na+ and Ca 2+ homeostasis, and caspase activation. The subsequent phase (late preconditioning) begins 12-24 hours after the stimulus and requires the synthesis of multiple stress-response proteins, including heat shock proteins HSP70, HSP27, and HSP32/heme oxygenase 1. Hepatic preconditioning is not limited to parenchymal cells but ameliorates sinusoidal perfusion, prevents postischemic neutrophil infiltration, and decreases the production of proinflammatory cytokines by Kupffer cells. This latter effect is important in improving systemic disorders associated with hepatic ischemia/reperfusion. The signals triggering hepatic preconditioning have been partially characterized, showing that adenosine, nitric oxide, and reactive oxygen species can activate multiple protein kinase cascades involving, among others, protein kinase C and p38 mitogen-activated protein kinase. These observations, along with preliminary studies in humans, give a rationale to perform clinical trials aimed at verifying the possible application of hepatic preconditioning in preventing ischemia/reperfusion injury during liver surgery.
AB - Ischemia/reperfusion is the main cause of hepatic damage consequent to temporary clamping of the hepatoduodenal ligament during liver surgery as well as graft failure after liver transplantation. In recent years, a number of animal studies have shown that pre-exposure of the liver to transient ischemia, hyperthermia, or mild oxidative stress increases the tolerance to reperfusion injury, a phenomenon known as hepatic preconditioning. The development of hepatic preconditioning can be differentiated into 2 phases. An immediate phase (early preconditioning) occurs within minutes and involves the direct modulation of energy supplies, pH regulation, Na+ and Ca 2+ homeostasis, and caspase activation. The subsequent phase (late preconditioning) begins 12-24 hours after the stimulus and requires the synthesis of multiple stress-response proteins, including heat shock proteins HSP70, HSP27, and HSP32/heme oxygenase 1. Hepatic preconditioning is not limited to parenchymal cells but ameliorates sinusoidal perfusion, prevents postischemic neutrophil infiltration, and decreases the production of proinflammatory cytokines by Kupffer cells. This latter effect is important in improving systemic disorders associated with hepatic ischemia/reperfusion. The signals triggering hepatic preconditioning have been partially characterized, showing that adenosine, nitric oxide, and reactive oxygen species can activate multiple protein kinase cascades involving, among others, protein kinase C and p38 mitogen-activated protein kinase. These observations, along with preliminary studies in humans, give a rationale to perform clinical trials aimed at verifying the possible application of hepatic preconditioning in preventing ischemia/reperfusion injury during liver surgery.
UR - http://www.scopus.com/inward/record.url?scp=0242406853&partnerID=8YFLogxK
U2 - 10.1016/j.gastro.2003.05.005
DO - 10.1016/j.gastro.2003.05.005
M3 - Article
SN - 0016-5085
VL - 125
SP - 1480
EP - 1491
JO - Gastroenterology
JF - Gastroenterology
IS - 5
ER -