Rational Krylov methods for functions of matrices with applications to fractional partial differential equations

LIDIA ACETO, Daniele Bertaccini, Fabio Durastante, Paolo Novati

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

In this paper we propose a new choice of poles to define reliable rational Krylov methods. These methods are used for approximating function of positive definite matrices. In particular, the fractional power and the fractional resolvent are considered because of their importance in the numerical solution of fractional partial differential equations. The numerical experiments on some fractional partial differential equation models confirm that the proposed approach is promising.
Lingua originaleInglese
pagine (da-a)470-482
Numero di pagine13
RivistaJournal of Computational Physics
Volume396
DOI
Stato di pubblicazionePubblicato - 2019

Keywords

  • Fractional Laplacian
  • Gauss-Jacobi rule
  • Krylov methods
  • Matrix functions

Fingerprint

Entra nei temi di ricerca di 'Rational Krylov methods for functions of matrices with applications to fractional partial differential equations'. Insieme formano una fingerprint unica.

Cita questo