Quantum orthogonal planes: ISOq,r(N) and SOq,r(N) - Bicovariant calculi and differential geometry on quantum Minkowski space

P. Aschieri, L. Castellani, A. M. Scarfone

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

We construct differential calculi on multiparametric quantum orthogonal planes in any dimension N. These calculi are bicovariant under the action of the full inhomogeneous (multiparametric) quantum group ISOq,r(N), and do contain dilatations. If we require bicovariance only under the quantum orthogonal group SOq,r(N), the calculus on the q-plane can be expressed in terms of its coordinates cursive Greek chia, differentials dcursive Greek chia and partial derivatives ∂a without the need of dilatations, thus generalizing known results to the multiparametric case. Using real forms that lead to the signature (n + 1, m) with m=n - 1, n, n + 1, we find ISOq,r(n + 1, m) and SOq,r(n + 1, m) bicovariant calculi on the multiparametric quantum spaces. The particular case of the quantum Minkowski space ISOq,r(3, 1)/SOq,r(3, 1) is treated in detail. The conjugated partial derivatives ∂*a can be expressed as linear combinations of the ∂a. This allows a deformation of the phase-space where no additional operators (besides cursive Greek chia and pa) are needed.

Lingua originaleInglese
pagine (da-a)159-175
Numero di pagine17
RivistaEuropean Physical Journal C
Volume7
Numero di pubblicazione1
DOI
Stato di pubblicazionePubblicato - 1999
Pubblicato esternamente

Fingerprint

Entra nei temi di ricerca di 'Quantum orthogonal planes: ISOq,r(N) and SOq,r(N) - Bicovariant calculi and differential geometry on quantum Minkowski space'. Insieme formano una fingerprint unica.

Cita questo