TY - JOUR
T1 - Probing the chiral magnetic wave with charge-dependent flow measurements in Pb-Pb collisions at the LHC
AU - The ALICE collaboration [email protected]
AU - Acharya, S.
AU - Adamová, D.
AU - Aglieri Rinella, G.
AU - Agnello, M.
AU - Agrawal, N.
AU - Ahammed, Z.
AU - Ahmad, S.
AU - Ahn, S. U.
AU - Ahuja, I.
AU - Akindinov, A.
AU - Al-Turany, M.
AU - Aleksandrov, D.
AU - Alessandro, B.
AU - Alfanda, H. M.
AU - Alfaro Molina, R.
AU - Ali, B.
AU - Alici, A.
AU - Alizadehvandchali, N.
AU - Alkin, A.
AU - Alme, J.
AU - Alocco, G.
AU - Alt, T.
AU - Altamura, A. R.
AU - Altsybeev, I.
AU - Alvarado, J. R.
AU - Anaam, M. N.
AU - Andrei, C.
AU - Andreou, N.
AU - Andronic, A.
AU - Anguelov, V.
AU - Antinori, F.
AU - Antonioli, P.
AU - Apadula, N.
AU - Aphecetche, L.
AU - Appelshäuser, H.
AU - Arata, C.
AU - Arcelli, S.
AU - Aresti, M.
AU - Arnaldi, R.
AU - Arneiro, J. G.M.C.A.
AU - Arsene, I. C.
AU - Arslandok, M.
AU - Augustinus, A.
AU - Averbeck, R.
AU - Azmi, M. D.
AU - Baba, H.
AU - Badalà, A.
AU - Cortese, P.
AU - Ramello, L.
AU - Sitta, M.
N1 - Publisher Copyright:
© The Author(s) 2023.
PY - 2023/12
Y1 - 2023/12
N2 - The Chiral Magnetic Wave (CMW) phenomenon is essential to provide insights into the strong interaction in QCD, the properties of the quark-gluon plasma, and the topological characteristics of the early universe, offering a deeper understanding of fundamental physics in high-energy collisions. Measurements of the charge-dependent anisotropic flow coefficients are studied in Pb-Pb collisions at center-of-mass energy per nucleon-nucleon collision sNN = 5.02 TeV to probe the CMW. In particular, the slope of the normalized difference in elliptic (v2) and triangular (v3) flow coefficients of positively and negatively charged particles as a function of their event-wise normalized number difference, is reported for inclusive and identified particles. The slope r3Norm is found to be larger than zero and to have a magnitude similar to r2Norm, thus pointing to a large background contribution for these measurements. Furthermore, r2Norm can be described by a blast wave model calculation that incorporates local charge conservation. In addition, using the event shape engineering technique yields a fraction of CMW (fCMW) contribution to this measurement which is compatible with zero. This measurement provides the very first upper limit for fCMW, and in the 10–60% centrality interval it is found to be 26% (38%) at 95% (99.7%) confidence level.
AB - The Chiral Magnetic Wave (CMW) phenomenon is essential to provide insights into the strong interaction in QCD, the properties of the quark-gluon plasma, and the topological characteristics of the early universe, offering a deeper understanding of fundamental physics in high-energy collisions. Measurements of the charge-dependent anisotropic flow coefficients are studied in Pb-Pb collisions at center-of-mass energy per nucleon-nucleon collision sNN = 5.02 TeV to probe the CMW. In particular, the slope of the normalized difference in elliptic (v2) and triangular (v3) flow coefficients of positively and negatively charged particles as a function of their event-wise normalized number difference, is reported for inclusive and identified particles. The slope r3Norm is found to be larger than zero and to have a magnitude similar to r2Norm, thus pointing to a large background contribution for these measurements. Furthermore, r2Norm can be described by a blast wave model calculation that incorporates local charge conservation. In addition, using the event shape engineering technique yields a fraction of CMW (fCMW) contribution to this measurement which is compatible with zero. This measurement provides the very first upper limit for fCMW, and in the 10–60% centrality interval it is found to be 26% (38%) at 95% (99.7%) confidence level.
KW - Collective Flow
KW - Heavy Ion Experiments
KW - Quark Deconfinement
UR - http://www.scopus.com/inward/record.url?scp=85192838180&partnerID=8YFLogxK
U2 - 10.1007/JHEP12(2023)067
DO - 10.1007/JHEP12(2023)067
M3 - Article
SN - 1029-8479
VL - 2023
JO - Journal of High Energy Physics
JF - Journal of High Energy Physics
IS - 12
M1 - 67
ER -