Probabilistic quantitative temporal reasoning

Paolo Terenziani, Antonella Andolina

Risultato della ricerca: Capitolo in libro/report/atti di convegnoContributo a conferenzapeer review

Abstract

Temporal reasoning, in the form of propagation of temporal constraints, is an important topic in Artificial Intelligence. The current literature in the area is moving from the treatment of "crisp" temporal constraints to fuzzy or probabilistic constraints, to account for different forms of uncertainty and\or preferences. However, despite the huge amount of work in the area, the spectrum of possible solutions has not been fully explored. In particular, no probabilistic approach coping with quantitative temporal constraints has been proposed yet. We overcome such a limitation of the current literature by proposing the first approach providing (i) a probabilistic extension to quantitative constraints, supporting the possibility of expressing alternative distances between time points, and of associating a probability to each alternative, and (ii) a framework for the propagation of such temporal constraints.

Lingua originaleInglese
Titolo della pubblicazione ospite32nd Annual ACM Symposium on Applied Computing, SAC 2017
EditoreAssociation for Computing Machinery
Pagine965-970
Numero di pagine6
ISBN (elettronico)9781450344869
DOI
Stato di pubblicazionePubblicato - 3 apr 2017
Pubblicato esternamente
Evento32nd Annual ACM Symposium on Applied Computing, SAC 2017 - Marrakesh, Morocco
Durata: 4 apr 20176 apr 2017

Serie di pubblicazioni

NomeProceedings of the ACM Symposium on Applied Computing
VolumePart F128005

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???32nd Annual ACM Symposium on Applied Computing, SAC 2017
Paese/TerritorioMorocco
CittàMarrakesh
Periodo4/04/176/04/17

Fingerprint

Entra nei temi di ricerca di 'Probabilistic quantitative temporal reasoning'. Insieme formano una fingerprint unica.

Cita questo