Predicting long-term vaccine efficacy against metastases using agents

Marzio Pennisi, Dario Motta, Alessandro Cincotti, Francesco Pappalardo

Risultato della ricerca: Capitolo in libro/report/atti di convegnoContributo a conferenzapeer review

Abstract

To move faster from preclinical studies (experiments in mice) towards clinical phase I trials (experiments in advanced cancer patients), the chance to predict the outcome of longer experiments represents a key step. We use the MetastaSim model to predict the long-term effects of the Triplex vaccine against metastases. To this end we simulate follow-ups of two and three of three months (equivalent approximately to 5.83 and 8.75 years in humans) to compare the long-term efficacy of the best protocol used "in vivo" against the one found by the MetastaSim model. We also check the efficacy of these two protocols by delaying the time of the first administration, in order to catch up the maximum time delay between the appearing of metastases and the administration of the vaccine needed to guarantee reasonable treatment efficacy.

Lingua originaleInglese
Titolo della pubblicazione ospiteBio-Inspired Computing and Applications - 7th International Conference on Intelligent Computing, ICIC 2011, Revised Selected Papers
Pagine97-106
Numero di pagine10
DOI
Stato di pubblicazionePubblicato - 2011
Pubblicato esternamente
Evento7th International Conference on Intelligent Computing, ICIC 2011 - Zhengzhou, China
Durata: 11 ago 201114 ago 2011

Serie di pubblicazioni

NomeLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume6840 LNBI
ISSN (stampa)0302-9743
ISSN (elettronico)1611-3349

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???7th International Conference on Intelligent Computing, ICIC 2011
Paese/TerritorioChina
CittàZhengzhou
Periodo11/08/1114/08/11

Fingerprint

Entra nei temi di ricerca di 'Predicting long-term vaccine efficacy against metastases using agents'. Insieme formano una fingerprint unica.

Cita questo