Abstract
Depending on their primary structure, the 28 mammalian transient receptor potential (TRP) cation channels identified so far can be sorted into 6 subfamilies: TRPC ("Canonical"), TRPV ("Vanilloid"), TRPM ("Melastatin"), TRPP ("Polycystin"), TRPML ("Mucolipin"), and TRPA ("Ankyrin"). The TRPV subfamily (vanilloid receptors) comprises channels critically involved in nociception and thermosensing (TRPV1, TRPV2, TRPV3, and TRPV4), whereas TRPV5 and TRPV6 are involved in renal Ca2+ absorption/reabsorption. Apart from TRPV1, the pharmacology of these channels is still insufficiently known. Furthermore, only few small-molecule ligands for non-TRPV1 vanilloid receptors have been identified, and little is known of their endogenous ligands, resulting in a substantial "orphan" state for these channels. In this review, we summarize the pharmacological properties of members of the TRPV subfamily, highlighting the critical issues and challenges facing their "deorphanization" and clinical exploitation.
Lingua originale | Inglese |
---|---|
pagine (da-a) | 1262-1279 |
Numero di pagine | 18 |
Rivista | Molecular Pharmacology |
Volume | 75 |
Numero di pubblicazione | 6 |
DOI | |
Stato di pubblicazione | Pubblicato - giu 2009 |
Pubblicato esternamente | Sì |