Peak-load forecasting using a functional semi-parametric approach

Frédéric Ferraty, Aldo Goia, Ernesto Salinelli, Philippe Vieu

Risultato della ricerca: Capitolo in libro/report/atti di convegnoContributo a conferenzapeer review

Abstract

We consider the problem of short-term peak load forecasting in a district-heating system using past heating demand data. Taking advantage of the functional nature of the data, we introduce a forecasting methodology based on functional regression approach. To avoid the limitations due to the linear specification when one uses the linear model and to the well-known dimensionality effects when one uses the full nonparametric model, we adopt a flexible semi-parametric approach based on the Projection Pursuit Regression idea. It leads to an additive decomposition which exploits the most interesting projections of the prediction variable to explain the response. The terms of such decomposition are estimated with a procedure which combines a spline approximation and the one-dimensional Nadaraya–Watson approach.

Lingua originaleInglese
Titolo della pubblicazione ospiteTopics in Nonparametric Statistics - Proceedings of the 1st Conference of the International Society for Nonparametric Statistics
EditorDimitris N. Politis, Michael G. Akritas, Soumendra N. Lahiri
EditoreSpringer New York LLC
Pagine105-114
Numero di pagine10
ISBN (elettronico)9781493905683
DOI
Stato di pubblicazionePubblicato - 2014
Evento1st Conference of the International Society of Nonparametric Statistics, ISNPS 2012 - Chalkidiki, Greece
Durata: 15 giu 201219 giu 2012

Serie di pubblicazioni

NomeSpringer Proceedings in Mathematics and Statistics
Volume74
ISSN (stampa)2194-1009
ISSN (elettronico)2194-1017

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???1st Conference of the International Society of Nonparametric Statistics, ISNPS 2012
Paese/TerritorioGreece
CittàChalkidiki
Periodo15/06/1219/06/12

Fingerprint

Entra nei temi di ricerca di 'Peak-load forecasting using a functional semi-parametric approach'. Insieme formano una fingerprint unica.

Cita questo