Abstract
We consider least energy solutions to the nonlinear equation -Δgu=f(r,u) posed on a class of Riemannian models (M,g) of dimension n≥2 which include the classical hyperbolic space Hn as well as manifolds with unbounded sectional geometry. Partial symmetry and existence of least energy solutions is proved for quite general nonlinearities f(r, u), where r denotes the geodesic distance from the pole of M.
Lingua originale | Inglese |
---|---|
pagine (da-a) | 1167-1193 |
Numero di pagine | 27 |
Rivista | Nonlinear Differential Equations and Applications |
Volume | 22 |
Numero di pubblicazione | 5 |
DOI | |
Stato di pubblicazione | Pubblicato - 26 ott 2015 |