Partial symmetry and existence of least energy solutions to some nonlinear elliptic equations on Riemannian models

Elvise Berchio, Alberto Ferrero, Maria Vallarino

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

We consider least energy solutions to the nonlinear equation -Δgu=f(r,u) posed on a class of Riemannian models (M,g) of dimension n≥2 which include the classical hyperbolic space Hn as well as manifolds with unbounded sectional geometry. Partial symmetry and existence of least energy solutions is proved for quite general nonlinearities f(r, u), where r denotes the geodesic distance from the pole of M.

Lingua originaleInglese
pagine (da-a)1167-1193
Numero di pagine27
RivistaNonlinear Differential Equations and Applications
Volume22
Numero di pubblicazione5
DOI
Stato di pubblicazionePubblicato - 26 ott 2015

Fingerprint

Entra nei temi di ricerca di 'Partial symmetry and existence of least energy solutions to some nonlinear elliptic equations on Riemannian models'. Insieme formano una fingerprint unica.

Cita questo