Parallel complexity of householder QR factorization

Mauro Leoncini, Giovanni Manzini, Luciano Margara

Risultato della ricerca: Capitolo in libro/report/atti di convegnoContributo a conferenzapeer review

Abstract

Ganssian Elimination with Partial Pivoting and Householder QR factorization are two very popular methods to solve linear systems. Implementations of these two methods are provided in state-of-the-art numerical libraries and packages, such as LAPACK and MATLAB. Ganssian Elimination with Partial Pivoting was already known to be Pcomplete. Here we prove that the Householder QR factorization is likely to be inherently sequential as well. We also investigate the problem of speedup vs non degeneracy and accuracy in numerical algorithms.

Lingua originaleInglese
Titolo della pubblicazione ospiteAlgorithms - ESA 1996 - 4th Annual European Symposium, Proceedings
EditorJosep Diaz, Maria Serna
EditoreSpringer Verlag
Pagine290-301
Numero di pagine12
ISBN (stampa)3540616802, 9783540616801
DOI
Stato di pubblicazionePubblicato - 1996
Pubblicato esternamente
Evento4th European Symposium on Algorithms, ESA 1996 - Barcelona, Spain
Durata: 25 set 199627 set 1996

Serie di pubblicazioni

NomeLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume1136
ISSN (stampa)0302-9743
ISSN (elettronico)1611-3349

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???4th European Symposium on Algorithms, ESA 1996
Paese/TerritorioSpain
CittàBarcelona
Periodo25/09/9627/09/96

Fingerprint

Entra nei temi di ricerca di 'Parallel complexity of householder QR factorization'. Insieme formano una fingerprint unica.

Cita questo