TY - JOUR
T1 - P-glycoprotein mediates celecoxib-induced apoptosis in multiple drug-resistant cell lines
AU - Fantappiè, Ornella
AU - Solazzo, Michela
AU - Lasagna, Nadia
AU - Platini, Francesca
AU - Tessitore, Luciana
AU - Mazzanti, Roberto
PY - 2007/5/15
Y1 - 2007/5/15
N2 - In several neoplastic diseases, including hepatocellular carcinoma, the expression of P-glycoprotein and cyclooxygenase-2 (COX-2) are often increased and involved in drug resistance and poor prognosis. P-glycoprotein, in addition to drug resistance, blocks cytochrome c release, preventing apoptosis in tumor cells. Because COX-2 induces P-glycoprotein expression, we evaluated the effect of celecoxib, a specific inhibitor of COX-2 activity, on P-glycoprotein-mediated resistance to apoptosis in cell lines expressing multidrug resistant (MDR) phenotype. Experiments were done using MDR-positive and parental cell lines at basal conditions and after exposure to 10 or 50 μmol/L celecoxib. We found that 10 μmol/L celecoxib reduced P-glycoprotein, Bcl-xL, and Bcl-2 expression, and induced translocation of Bax from cytosol to mitochondria and cytochrome c release into cytosol in MDR-positive hepatocellular carcinoma cells. This causes the activation of caspase-3 and increases the number of cells going into apoptosis. No effect was shown on parental drug-sensitive or on MDR-positive hepatocellular carcinoma cells after transfection with MDR1 small interfering RNA. Interestingly, although inhibiting COX-2 activity, 50 μmol/L celecoxib weakly increased the expression of COX-2 and P-glycoprotein and did not alter Bcl-xL and Bcl-2 expression. In conclusion, these results show that relatively low concentrations of celecoxib induce cell apoptosis in MDR cell lines. This effect is mediated by P-glycoprotein and suggests that the efficacy of celecoxib in the treatment of different types of cancer may depend on celecoxib concentration and P-glycoprotein expression.
AB - In several neoplastic diseases, including hepatocellular carcinoma, the expression of P-glycoprotein and cyclooxygenase-2 (COX-2) are often increased and involved in drug resistance and poor prognosis. P-glycoprotein, in addition to drug resistance, blocks cytochrome c release, preventing apoptosis in tumor cells. Because COX-2 induces P-glycoprotein expression, we evaluated the effect of celecoxib, a specific inhibitor of COX-2 activity, on P-glycoprotein-mediated resistance to apoptosis in cell lines expressing multidrug resistant (MDR) phenotype. Experiments were done using MDR-positive and parental cell lines at basal conditions and after exposure to 10 or 50 μmol/L celecoxib. We found that 10 μmol/L celecoxib reduced P-glycoprotein, Bcl-xL, and Bcl-2 expression, and induced translocation of Bax from cytosol to mitochondria and cytochrome c release into cytosol in MDR-positive hepatocellular carcinoma cells. This causes the activation of caspase-3 and increases the number of cells going into apoptosis. No effect was shown on parental drug-sensitive or on MDR-positive hepatocellular carcinoma cells after transfection with MDR1 small interfering RNA. Interestingly, although inhibiting COX-2 activity, 50 μmol/L celecoxib weakly increased the expression of COX-2 and P-glycoprotein and did not alter Bcl-xL and Bcl-2 expression. In conclusion, these results show that relatively low concentrations of celecoxib induce cell apoptosis in MDR cell lines. This effect is mediated by P-glycoprotein and suggests that the efficacy of celecoxib in the treatment of different types of cancer may depend on celecoxib concentration and P-glycoprotein expression.
UR - http://www.scopus.com/inward/record.url?scp=34250365663&partnerID=8YFLogxK
U2 - 10.1158/0008-5472.CAN-06-3952
DO - 10.1158/0008-5472.CAN-06-3952
M3 - Article
SN - 0008-5472
VL - 67
SP - 4915
EP - 4923
JO - Cancer Research
JF - Cancer Research
IS - 10
ER -