Abstract
We provide a quantitative version of the isoperimetric inequality for the fundamental tone of a biharmonic Neumann problem. Such an inequality has been recently established by Chasman adapting Weinberger’s argument for the corresponding second order problem. Following a scheme introduced by Brasco and Pratelli for the second order case, we prove that a similar quantitative inequality holds also for the biharmonic operator. We also prove the sharpness of both such an inequality and the corresponding one for the biharmonic Steklov problem.
| Lingua originale | Inglese |
|---|---|
| pagine (da-a) | 843-869 |
| Numero di pagine | 27 |
| Rivista | Journal of Spectral Theory |
| Volume | 8 |
| Numero di pubblicazione | 3 |
| DOI | |
| Stato di pubblicazione | Pubblicato - 2018 |
| Pubblicato esternamente | Sì |