On the stability of some isoperimetric inequalities for the fundamental tones of free plates

Davide Buoso, L. Mercredi Chasman, Luigi Provenzano

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

We provide a quantitative version of the isoperimetric inequality for the fundamental tone of a biharmonic Neumann problem. Such an inequality has been recently established by Chasman adapting Weinberger’s argument for the corresponding second order problem. Following a scheme introduced by Brasco and Pratelli for the second order case, we prove that a similar quantitative inequality holds also for the biharmonic operator. We also prove the sharpness of both such an inequality and the corresponding one for the biharmonic Steklov problem.

Lingua originaleInglese
pagine (da-a)843-869
Numero di pagine27
RivistaJournal of Spectral Theory
Volume8
Numero di pubblicazione3
DOI
Stato di pubblicazionePubblicato - 2018
Pubblicato esternamente

Fingerprint

Entra nei temi di ricerca di 'On the stability of some isoperimetric inequalities for the fundamental tones of free plates'. Insieme formano una fingerprint unica.

Cita questo