On the spectral asymptotics for the buckling problem

DAVIDE BUOSO, PAOLO LUZZINI, L. Provenzano, J. Stubbe

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

We provide a direct proof of Weyl's law for the buckling eigenvalues of the biharmonic operator on domains of Rd of finite measure. The proof relies on asymptotically sharp lower and upper bounds that we develop for the Riesz mean R2(z). Lower bounds are obtained by making use of the so-called "averaged variational principle."Upper bounds are obtained in the spirit of Berezin-Li-Yau. Moreover, we state a conjecture for the second term in Weyl's law and prove its correctness in two special cases: balls in Rd and bounded intervals in R.
Lingua originaleInglese
Numero di pagine18
RivistaJournal of Mathematical Physics
Volume62
Numero di pubblicazione12
DOI
Stato di pubblicazionePubblicato - 2021

Fingerprint

Entra nei temi di ricerca di 'On the spectral asymptotics for the buckling problem'. Insieme formano una fingerprint unica.

Cita questo