Abstract
We study existence and boundedness of solutions for the
quasilinear elliptic equation −Δ_m u = λ(1+u)^p in a bounded domain Ω
with homogeneous Dirichlet boundary conditions. The assumptions on
both the parameters λ and p are fundamental. Strange critical exponents
appear when boundedness of solutions is concerned. In our proofs we
use techniques from calculus of variations, from critical-point theory,
and from the theory of ordinary differential equations.
Lingua originale | Inglese |
---|---|
pagine (da-a) | 1201-1234 |
Numero di pagine | 34 |
Rivista | Advances in Differential Equations |
Volume | 9 |
Numero di pubblicazione | 11-12 |
Stato di pubblicazione | Pubblicato - 2004 |
Keywords
- critical exponents
- m-Laplacian
- minimal and extremal solutions