On the Randomized Error of Polynomial Methods for Eigenvector and Eigenvalue Estimates

Gianna M. Del Corso, Giovanni Manzini

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

In this paper we consider the problem of estimating the largest eigenvalue and the corresponding eigenvector of a symmetric matrix. In particular, we consider iterative methods, such as the power method and the Lanczos method. These methods need a starting vector which is usually chosen randomly. We analyze the behavior of these methods when the initial vector is chosen with uniform distribution over the unitn-dimensional sphere. We extend and generalize the results reported earlier. In particular, we give upper and lower bounds on the Lpnorm of the randomized error, and we improve previously known bounds with a detailed analysis of the role of the multiplicity of the largest eigenvalue.

Lingua originaleInglese
pagine (da-a)419-456
Numero di pagine38
RivistaJournal of Complexity
Volume13
Numero di pubblicazione4
DOI
Stato di pubblicazionePubblicato - dic 1997
Pubblicato esternamente

Fingerprint

Entra nei temi di ricerca di 'On the Randomized Error of Polynomial Methods for Eigenvector and Eigenvalue Estimates'. Insieme formano una fingerprint unica.

Cita questo