Abstract
We review the construction of the multiparametric inhomogeneous orthogonal quantum group ISOq,r(N) as a projection from SOq,r(N + 2), and recall the conjugation that for N = 4 leads to the quantum Poincaré group. We study the properties of the universal enveloping algebra Uq,r(iso(N)), and give an R-matrix formulation. A quantum Lie algebra and a bicovariant differential calculus on twisted ISO(N) are found.
Lingua originale | Inglese |
---|---|
pagine (da-a) | 191-198 |
Numero di pagine | 8 |
Rivista | Nuclear Physics B - Proceedings Supplements |
Volume | 56 |
Numero di pubblicazione | 3 |
DOI | |
Stato di pubblicazione | Pubblicato - lug 1997 |
Pubblicato esternamente | Sì |