ON THE CORRELATION BETWEEN CRITICAL POINTS AND CRITICAL VALUES FOR RANDOM SPHERICAL HARMONICS

V. Cammarota, A. P. Todino

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

We study the correlation between the total number of critical points of random spherical harmonics and the number of critical points with value in any interval I ⊂ ℝ. We show that the correlation is asymptotically zero, while the partial correlation, after controlling the random L2-norm on the sphere of the eigenfunctions, is asymptotically one. Our findings complement the results obtained by Wigman (2012) and Marinucci and Rossi (2021) on the correlation between nodal and boundary length of random spherical harmonics.

Lingua originaleInglese
pagine (da-a)41-62
Numero di pagine22
RivistaTheory of Probability and Mathematical Statistics
Volume106
DOI
Stato di pubblicazionePubblicato - 2022
Pubblicato esternamente

Fingerprint

Entra nei temi di ricerca di 'ON THE CORRELATION BETWEEN CRITICAL POINTS AND CRITICAL VALUES FOR RANDOM SPHERICAL HARMONICS'. Insieme formano una fingerprint unica.

Cita questo