On computing the entropy of cellular automata

Michele D'amico, Giovanni Manzini, Luciano Margara

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

We study the topological entropy of a particular class of dynamical systems: cellular automata. The topological entropy of a dynamical system (X,F) is a measure of the complexity of the dynamics of F over the space X. The problem of computing (or even approximating) the topological entropy of a given cellular automata is algorithmically undecidable (Ergodic Theory Dynamical Systems 12 (1992) 255). In this paper, we show how to compute the entropy of two important classes of cellular automata namely, linear and positively expansive cellular automata. In particular, we prove a closed formula for the topological entropy of D-dimensional (D⩾1) linear cellular automata over the ring Z m(m⩾2) and we provide an algorithm for computing the topological entropy of positively expansive cellular automata.

Lingua originaleInglese
pagine (da-a)1629-1646
Numero di pagine18
RivistaTheoretical Computer Science
Volume290
Numero di pubblicazione3
DOI
Stato di pubblicazionePubblicato - 4 gen 2003
Pubblicato esternamente

Fingerprint

Entra nei temi di ricerca di 'On computing the entropy of cellular automata'. Insieme formano una fingerprint unica.

Cita questo