Abstract
We describe a domain decomposition method applied to a boundary value problem for a transport equation in two dimensions. This decomposition leads to a family of problems coupled through suitable equations on the interfaces (Steklov-Poincaré equations). Via sharp stability estimates, we prove the convergence of an iterative procedure that gives the solution of the Steklov- Poincaré equation for the two-domain case. What precedes is done both for the continuous problem and for its discretization based on a streamline diffusion finite element method.
Lingua originale | Inglese |
---|---|
pagine (da-a) | 111-135 |
Numero di pagine | 25 |
Rivista | IMA Journal of Numerical Analysis |
Volume | 14 |
Numero di pubblicazione | 1 |
DOI | |
Stato di pubblicazione | Pubblicato - gen 1994 |
Pubblicato esternamente | Sì |