Numerical computation of eigenvalues in spectral gaps of Sturm-Liouville operators

L. Aceto, P. Ghelardoni, M. Marletta

Risultato della ricerca: Contributo su rivistaArticolo da conferenzapeer review

Abstract

We consider two different approaches for the numerical calculation of eigenvalues of a singular Sturm-Liouville problem -y″+Q(x)y=λy, x∈R+, where the potential Q is a decaying L1 perturbation of a periodic function and the essential spectrum consequently has a band-gap structure. Both the approaches which we propose are spectrally exact: they are capable of generating approximations to eigenvalues in any gap of the essential spectrum, and do not generate any spurious eigenvalues. We also prove (Theorem 2.4) that even the most careless of regularizations of the problem can generate at most one spurious eigenvalue in each spectral gap, a result which does not seem to have been known hitherto.

Lingua originaleInglese
pagine (da-a)453-470
Numero di pagine18
RivistaJournal of Computational and Applied Mathematics
Volume189
Numero di pubblicazione1-2
DOI
Stato di pubblicazionePubblicato - 1 mag 2006
Pubblicato esternamente
EventoProceedings of the 11th International Congress on Computational and Applies Mathematics -
Durata: 26 lug 200430 lug 2004

Fingerprint

Entra nei temi di ricerca di 'Numerical computation of eigenvalues in spectral gaps of Sturm-Liouville operators'. Insieme formano una fingerprint unica.

Cita questo