Abstract
Nonlinear principal components are defined for normal random vectors. Their properties are investigated and interpreted in terms of the classical linear principal component analysis. A characterization theorem is proven. All these results are employed to give a unitary interpretation to several different issues concerning the Chernoff-Poincaré type inequalities and their applications to the characterization of normal distributions.
| Lingua originale | Inglese |
|---|---|
| pagine (da-a) | 652-660 |
| Numero di pagine | 9 |
| Rivista | Journal of Multivariate Analysis |
| Volume | 100 |
| Numero di pubblicazione | 4 |
| DOI | |
| Stato di pubblicazione | Pubblicato - apr 2009 |