Nonlinear principal components, II: Characterization of normal distributions

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

Nonlinear principal components are defined for normal random vectors. Their properties are investigated and interpreted in terms of the classical linear principal component analysis. A characterization theorem is proven. All these results are employed to give a unitary interpretation to several different issues concerning the Chernoff-Poincaré type inequalities and their applications to the characterization of normal distributions.

Lingua originaleInglese
pagine (da-a)652-660
Numero di pagine9
RivistaJournal of Multivariate Analysis
Volume100
Numero di pubblicazione4
DOI
Stato di pubblicazionePubblicato - apr 2009

Fingerprint

Entra nei temi di ricerca di 'Nonlinear principal components, II: Characterization of normal distributions'. Insieme formano una fingerprint unica.

Cita questo