Abstract
Nonlinear principal components are defined for normal random vectors. Their properties are investigated and interpreted in terms of the classical linear principal component analysis. A characterization theorem is proven. All these results are employed to give a unitary interpretation to several different issues concerning the Chernoff-Poincaré type inequalities and their applications to the characterization of normal distributions.
Lingua originale | Inglese |
---|---|
pagine (da-a) | 652-660 |
Numero di pagine | 9 |
Rivista | Journal of Multivariate Analysis |
Volume | 100 |
Numero di pubblicazione | 4 |
DOI | |
Stato di pubblicazione | Pubblicato - apr 2009 |