Noncommutative de Rham cohomology of finite groups

L. Castellani, R. Catenacci, M. Debernardi, C. Pagani

Risultato della ricerca: Contributo su rivistaBreve indaginepeer review

Abstract

We study de Rham cohomology for various differential calculi on finite groups G up to order 8. These include the permutation group S3, the dihedral group D4 and the quaternion group Q. Poincaré duality holds in every case, and under some assumptions (essentially the existence of a top form) we find that it must hold in general. A short review of the bicovariant (noncommutative) differential calculus on finite G is given for selfconsistency. Exterior derivative, exterior product, metric, Hodge dual, connections, torsion, curvature, and biinvariant integration can be defined algebraically. A projector decomposition of the braiding operator is found, and used in constructing the projector on the space of two-forms. By means of the braiding operator and the metric a knot invariant is defined for any finite group.

Lingua originaleInglese
pagine (da-a)1961-1986
Numero di pagine26
RivistaInternational Journal of Modern Physics A
Volume19
Numero di pubblicazione12
DOI
Stato di pubblicazionePubblicato - 10 mag 2004

Fingerprint

Entra nei temi di ricerca di 'Noncommutative de Rham cohomology of finite groups'. Insieme formano una fingerprint unica.

Cita questo