TY - JOUR
T1 - Nitric oxide inhibits apoptosis via AP-1-dependent CD95L transactivation
AU - Melino, Gerry
AU - Bernassola, Francesca
AU - Catani, Maria Valeria
AU - Rossi, Antonello
AU - Corazzari, Marco
AU - Sabatini, Stefania
AU - Vilbois, Francis
AU - Green, Douglas R.
PY - 2000/5/1
Y1 - 2000/5/1
N2 - Several inducers of cytotoxic stress promote apoptotic cell death, which, at least in some cases, involves the CD95/CD95 ligand (CD95L) pathway. The induction of the CD95/CD95L pathway can be activated by the activator protein-1 (AP-1)-mediated up-regulation of the CD95L promoter, which is responsible for the induction of apoptosis elicited by stimuli such as etoposide. We show that nitric oxide (NO) represents a regulatory element able to block apoptosis by interfering with this loop. Etoposide- and C6- ceramide-induced apoptosis in Jurkat T cells with different kinetics. Cell death was accompanied by an increase in DNA-binding activity of the transcription factor AP-1, transactivation of the AP-1 site-containing CD95L promoter, and caspase 3-like protease activation. Using different NO- releasing compounds, we found that apoptosis was prevented in a dose- dependent manner. Furthermore, in both models of apoptosis, NO-releasing compounds dose-dependently reduced: (a) the number of the titratable thiol groups (cysteine residues) of c-Jun; (b) induction of AP-1 DNA-binding activity; (c) AP-1-driven transactivation of the CD95L promoter; and (d) caspase activation. In conclusion, our data demonstrate that NO can modulate cell death at an upstream level, by interfering with the ability of AP-1 to induce CD95L expression.
AB - Several inducers of cytotoxic stress promote apoptotic cell death, which, at least in some cases, involves the CD95/CD95 ligand (CD95L) pathway. The induction of the CD95/CD95L pathway can be activated by the activator protein-1 (AP-1)-mediated up-regulation of the CD95L promoter, which is responsible for the induction of apoptosis elicited by stimuli such as etoposide. We show that nitric oxide (NO) represents a regulatory element able to block apoptosis by interfering with this loop. Etoposide- and C6- ceramide-induced apoptosis in Jurkat T cells with different kinetics. Cell death was accompanied by an increase in DNA-binding activity of the transcription factor AP-1, transactivation of the AP-1 site-containing CD95L promoter, and caspase 3-like protease activation. Using different NO- releasing compounds, we found that apoptosis was prevented in a dose- dependent manner. Furthermore, in both models of apoptosis, NO-releasing compounds dose-dependently reduced: (a) the number of the titratable thiol groups (cysteine residues) of c-Jun; (b) induction of AP-1 DNA-binding activity; (c) AP-1-driven transactivation of the CD95L promoter; and (d) caspase activation. In conclusion, our data demonstrate that NO can modulate cell death at an upstream level, by interfering with the ability of AP-1 to induce CD95L expression.
UR - http://www.scopus.com/inward/record.url?scp=0034194327&partnerID=8YFLogxK
M3 - Article
SN - 0008-5472
VL - 60
SP - 2377
EP - 2383
JO - Cancer Research
JF - Cancer Research
IS - 9
ER -