Nicotinic acid adenine dinucleotide phosphate (NAADP) induces intracellular Ca2+ release through the two-pore channel tpc1 in metastatic colorectal cancer cells

Pawan Faris, Giorgia Pellavio, Federica Ferulli, Francesca Di Nezza, Mudhir Shekha, Dmitry Lim, Marcello Maestri, Germano Guerra, Luigi Ambrosone, Paolo Pedrazzoli, Umberto Laforenza, Daniela Montagna, Francesco Moccia

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

Nicotinic acid adenine dinucleotide phosphate (NAADP) gates two-pore channels 1 and 2 (TPC1 and TPC2) to elicit endo-lysosomal (EL) Ca2+ release. NAADP-induced EL Ca2+ signals may be amplified by the endoplasmic reticulum (ER) through the Ca2+-induced Ca2+ release mechanism (CICR). Herein, we aimed at assessing for the first time the role of EL Ca2+ signaling in primary cultures of human metastatic colorectal carcinoma (mCRC) by exploiting Ca2+ imaging and molecular biology techniques. The lysosomotropic agent, Gly-Phe β-naphthylamide (GPN), and nigericin, which dissipates the ΔpH which drives Ca2+ refilling of acidic organelles, caused massive Ca2+ release in the presence of a functional inositol-1,4,5-trisphosphate (InsP3)-sensitive ER Ca2+ store. Liposomal delivery of NAADP induced a transient Ca2+ release that was reduced by GPN and NED-19, a selective TPC antagonist. Pharmacological and genetic manipulations revealed that the Ca2+ response to NAADP was triggered by TPC1, the most expressed TPC isoform in mCRC cells, and required ER-embedded InsP3 receptors. Finally, NED-19 and genetic silencing of TPC1 reduced fetal calf serum-induced Ca2+ signals, proliferation, and extracellular signal-regulated kinase and Akt phoshorylation in mCRC cells. These data demonstrate that NAADP-gated TPC1 could be regarded as a novel target for alternative therapies to treat mCRC.

Lingua originaleInglese
Numero di articolo542
RivistaCancers
Volume11
Numero di pubblicazione4
DOI
Stato di pubblicazionePubblicato - apr 2019

Fingerprint

Entra nei temi di ricerca di 'Nicotinic acid adenine dinucleotide phosphate (NAADP) induces intracellular Ca2+ release through the two-pore channel tpc1 in metastatic colorectal cancer cells'. Insieme formano una fingerprint unica.

Cita questo