Neural networks for the oil spill detection using ERS-SAR data

G. Calabresi, F. Del Frate, J. Lichtenegger, A. Petrocchi, P. Trivero

Risultato della ricerca: Contributo alla conferenzaContributo in Atti di Convegnopeer review

Abstract

A neural network approach for semi-automatic detection of oil spills ERS-SAR imagery is presented in this paper. The network input is a vector containing the values of a set of features, previously calculated by using dedicated routines, characterizing the oil spill candidate either from the point of view of its geometry or of its physical behaviour. The algorithm classification performance has been evaluated on a data set containing verified examples of oil spill and look-alike.

Lingua originaleInglese
Pagine215-217
Numero di pagine3
Stato di pubblicazionePubblicato - 1999
Pubblicato esternamente
EventoProceedings of the 1999 IEEE International Geoscience and Remote Sensing Symposium (IGARSS'99) 'Remote Sensing of the Systems Earth - A Challenge for the 21st Century' - Hamburg, Ger
Durata: 28 giu 19992 lug 1999

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???Proceedings of the 1999 IEEE International Geoscience and Remote Sensing Symposium (IGARSS'99) 'Remote Sensing of the Systems Earth - A Challenge for the 21st Century'
CittàHamburg, Ger
Periodo28/06/992/07/99

Fingerprint

Entra nei temi di ricerca di 'Neural networks for the oil spill detection using ERS-SAR data'. Insieme formano una fingerprint unica.

Cita questo