Multimodal Deep Learning and Fast Retrieval for Recommendation

Daniele Ciarlo, Luigi Portinale

Risultato della ricerca: Capitolo in libro/report/atti di convegnoContributo a conferenzapeer review

Abstract

We propose a retrieval architecture in the context of recommender systems for e-commerce applications, based on a multi-modal representation of the items of interest (textual description and images of the products), paired with a locality-sensitive hashing (LSH) indexing scheme for the fast retrieval of the potential recommendations. In particular, we learn a latent multimodal representation of the items through the use of CLIP architecture, combining text and images in a contrastive way. The item embeddings thus generated are then searched by means of different types of LSH. We report on the experiments we performed on two real-world datasets from e-commerce sites, containing both images and textual descriptions of the products.

Lingua originaleInglese
Titolo della pubblicazione ospiteFoundations of Intelligent Systems - 26th International Symposium, ISMIS 2022, Proceedings
EditorMichelangelo Ceci, Sergio Flesca, Elio Masciari, Giuseppe Manco, Zbigniew W. Raś, Zbigniew W. Raś
EditoreSpringer Science and Business Media Deutschland GmbH
Pagine52-60
Numero di pagine9
ISBN (stampa)9783031165634
DOI
Stato di pubblicazionePubblicato - 2022
Evento26th International Symposium on Methodologies for Intelligent Systems, ISMIS 2022 - Rende, Italy
Durata: 3 ott 20225 ott 2022

Serie di pubblicazioni

NomeLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13515 LNAI
ISSN (stampa)0302-9743
ISSN (elettronico)1611-3349

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???26th International Symposium on Methodologies for Intelligent Systems, ISMIS 2022
Paese/TerritorioItaly
CittàRende
Periodo3/10/225/10/22

Fingerprint

Entra nei temi di ricerca di 'Multimodal Deep Learning and Fast Retrieval for Recommendation'. Insieme formano una fingerprint unica.

Cita questo