Multimodal Deep Learning and Fast Retrieval for Recommendation

Daniele Ciarlo, Luigi PORTINALE

Risultato della ricerca: Contributo alla conferenzaContributo in Atti di Convegnopeer review

Abstract

We propose a retrieval architecture in the context of recommender systems for e-commerce applications, based on a multi-modal representation of the items of interest (textual description and images of the products), paired with a locality-sensitive hashing (LSH) indexing scheme for the fast retrieval of the potential recommendations. In particular, we learn a latent multimodal representation of the items through the use of CLIP architecture, combining text and images in a contrastive way. The item embeddings thus generated are then searched by means of different types of LSH. We report on the experiments we performed on two real-world datasets from e-commerce sites, containing both images and textual descriptions of the products.
Lingua originaleInglese
Pagine52-60
Numero di pagine9
DOI
Stato di pubblicazionePubblicato - 2022
EventoISMIS 2022 - Cosenza
Durata: 1 gen 2022 → …

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???ISMIS 2022
CittàCosenza
Periodo1/01/22 → …

Keywords

  • Multimodal embeddings Recommender systems Locality Sensitive Hashing

Fingerprint

Entra nei temi di ricerca di 'Multimodal Deep Learning and Fast Retrieval for Recommendation'. Insieme formano una fingerprint unica.

Cita questo