Model selection and parameter estimation in non-linear nested models: A sequential generalized DKL-optimum design

Caterina May, Chiara Tommasi

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

This work proposes a sequential procedure to select the best model among several nested non-linear models and to estimate efficiently the parameters of the chosen model. At the first step of this procedure, a generalized DKL-optimum design is computed that is optimal for the goals of model selection and parameter estimation. Subsequently, at each step, an adaptive generalized DKL-optimum design is computed from the data accrued and the tests previously performed. The proposed sequential scheme selects the best non-linear model with probability converging to one; moreover it allows efficient estimates of parameters, since the adaptive sequential DKL-optimum designs converge to the D-optimum design for the "true" model.

Lingua originaleInglese
pagine (da-a)63-82
Numero di pagine20
RivistaStatistica Sinica
Volume24
Numero di pubblicazione1
DOI
Stato di pubblicazionePubblicato - gen 2014

Fingerprint

Entra nei temi di ricerca di 'Model selection and parameter estimation in non-linear nested models: A sequential generalized DKL-optimum design'. Insieme formano una fingerprint unica.

Cita questo